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Abstract: This paper deals with the study of thermoelastic
thin beam in a modified couple stress with three-phase-
lag thermoelastic diffusion model subjected to thermal
and chemical potential sources. The governing equations
are derived by using the Euler-Bernoulli beam assumption
and eigenvalue approach. The Laplace transform tech-
nique is employed to obtain the expressions for displace-
ments, lateral deflection, temperature change, axial stress
and chemical potential. A particular type of instantaneous
and distributed sources is taken to show the utility of the
approach. The general algorithm of the inverse Laplace
transform is developed to compute the results numerically.
The numerical results are depicted graphically to show the
effects of phase lags, with and without energy dissipation
on the resulting quantities. Some special cases are given.

Keywords: Modified couple stress theory, thermoelastic
thin beam, three-phase-lag, eigenvalue approach, Laplace
transform

1 Introduction
The concept of couple stress linear theory of elasticity was
introduced by Voigt [1] and this theory was extended by
Cosserat and Cosserat [2] Couple stress theory is an ex-
tended continuum theory that includes the effects of a cou-
ple per unit area on a material volume, in addition to the
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classical direct and shear forces per unit area. This im-
mediately admits the possibility of asymmetric stress ten-
sor, since shear stress no longer have to be conjugate in
order to ensure rotational equilibrium. Toupin [3] derived
the associative constitutive equations for finite deforma-
tion of perfectly elastic materials. The linearized theory
of couple stress elasticity was developed by Mindlin and
Tiersten [4]. Sengupta and Ghosh [5, 6] studied the effect
of couple stresses on surface waves in elastic media and
propagation of waves in an elastic layer using linearized
theory of couple stress elasticity.

Yang, Chong, Lam and Tong [7] modified the classi-
cal couple stress theory and proposed a modified couple
stress model, in which the couple stress tensor is symmet-
rical and only one material length parameter is needed to
capture the size effect that is caused by micro-structure.
The bending and vibration of functionally graded mi-
crobeams using a new higher order beam theory and the
modified couple stress theory was presented by Simsek
and Reddy [8]. The significance of using eigenvalue ap-
proach is to reduce the problem on vector-matrix differen-
tial equation to an algebraic eigenvalue problems. Thus,
the solutions for field variables are obtained by determin-
ing the eigenvalues and the corresponding eigenvectors. In
this approach, the field quantities are directly involved in
the formulation of the problem, and as such, the bound-
ary and initial conditions can be applied directly. Kumar,
Singh, and Chadha [9] investigated the problem ofmicrop-
olar thermoelasticitywithout energydissipationon theba-
sis of eigenvalue approach.

The five generalizations of the coupled theory were
constructed by Hetnarski and Ignaczak [10] which gives
a number of important analytical results. The first gen-
eralized thermoelasticity theory with one thermal relax-
ation time was given by Lord and Shulman [11] The sec-
ond generalization was given by Green and Lindsay [12],
who formulated a temperature rate-dependent thermoe-
lasticity with two thermal relaxation times. The third gen-
eralization of the coupled theory of thermoelasticity de-
veloped by Hetnarski and Ignaczak [13] is known as low
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temperature thermoelasticity. The coupled theory of ther-
moelasticity discussed by Green and Naghdi [14] is the
fourth generalization theory. Tzou [15] proposed to lump
the microstructural effects on heat transport mechanism
into the delay response in time in the macroscopic formu-
lation and introduced a new generalization of the Fourier
law, called dual phase lag heat conduction law with the
introduction of two different lags: one is the phase lag of
the heat flux and is related to the thermal wave speed and
other is the phase lag of the temperature gradient that rep-
resents the time constant for electron-lattice equilibrium
and is known as the fifth generalization of thermoelas-
ticity. Three-phase-lag thermoelastic model was given by
Roychoudhuri [16].

Thermodiffusion is used to describe the processes of
thermomechanical treatment of metals (carboning, nitrid-
ing steel, etc.) and these processes are thermally acti-
vated with their diffusing substances being, nitrogen, car-
bon and so on. They are accompanied by deformations of
the solid. The theory of thermoelastic with mass diffusion
was formulated by Nowacki [17]. The coupled thermoelas-
tic model is applied in this theory, which implies infinite
speeds of propagation of thermoelastic waves. Sherief,
Saleh and Hamza [18] developed the theory of general-
ized thermoelastic diffusion that predicts finite speeds of
propagation for thermoelastic and diffusive waves. Sherief
and Saleh [19] worked on the problem of a thermoelastic
half space with a permeating substance in contact with
the bounding plane in the context of the theory of general-
ized thermoelastic diffusion with one relaxation time. The
basic equations in generalized thermoelastic diffusion for
Green Lindsay (GL-model) theory was discussed by Kumar
and Kansal [20].

By using the integral transform technique, deforma-
tion due to inclined load in generalized thermodiffusive
elastic medium was studied by Sharma [21]. Sarkar and
Lahiri [22] presented the two-temperature magnetother-
moelastic problem in the context of Lord-Shulman (L-S)
theory. The basic set of equations was solved by Laplace
transform and eigenvalue approach. The problem of ther-
moelastic damping in a micro-beam resonator using mod-
ified couple stress theory was investigated by Rezazadeh,
Vahdat, Tayefeh-rezaei, and Cetinkaya [23]. Abouelregal
and Zenkour [24] discussed the problem of an axially mov-
ing microbeam subjected to sinusoidal pulse heating and
an external transverse excitation with one relaxation time
by using Laplace transform and also studied the effects
of pulse width of thermal vibration, moving speed and
the transverse excitation. Kumar andDevi [25] investigated
the deformation in a micropolar thermoelastic diffusion
medium due to thermal source by using the finite element

method in the context of one relaxation time. Effects of
Hall current and rotation in a modified couple stress ther-
moelastic diffusion due to ramp type loading was studied
by Reddy, Romanoff and Loya [26]. Chen and Wang [27]
used the finite element method to solve the problem of
functionally graded circular plates with modified couple
stress theory. Zenk andAbouelregal [28] constructed anew
model for composite laminated Reddy plate in modified
couple-stress theory based on the global local theory. The
vibration of functionally graded microbeams in the con-
text of Green-Naghdi thermoelasticity theory (1993) was
presented by Kumar [29] Green and Naghdi [30] presented
thermoelastic beamdue to thermal source inmodified cou-
ple stress theory.

The present paper is devoted to the study of thermoe-
lastic thin beam in a modified couple stress with three-
phase-lag thermoelastic diffusion model. The basic set of
equations is solved by applying the Euler-Bernoulli beam
assumption and eigenvalue approach. The Laplace trans-
form is applied to obtain the expressions for displace-
ments, lateral deflection, temperature change, axial stress
and chemical potential. The physical quantities are com-
puted numerically and depicted graphically to show the
effects of phase lags, Green-Naghdi (II) and Green-Naghdi
(III) theories.

2 Basic Equations
The constitutive relations, equations of motion, equation
of heat conduction and equation of mass diffusion in
a modified couple-stress generalized thermoelastic with
massdiffusion in theabsenceof body forces, body couples,
heat and mass diffusive sources are given in equations (7)
to (31) as follows:

(i) Constitutive Relations

tij = λeδij + 2µeij−
1
2 ekijmlk,l−β1Tδij−β2Cδij , (1)

mij = 2αχij , (2)

P = −β2ekk − aT + bC, (3)

eij =
1
2
(︀
ui,j + uj,i

)︀
, (4)

χij =
1
2
(︀
ωi,j + ωj,i

)︀
, (5)

ωi =
1
2 eipquq,p , (6)
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(ii) Equations of Motion(︁
λ + µ + α4∆

)︁
∇ (∇.u) +

(︁
µ − α4∆

)︁
∇2u (7)

− β1∇T − β2∇C = ρ
..
u,

(iii) Equation of Heat Conduction

K*
(︂
1 + τν

∂
∂t

)︂
∇2T + K

(︂
1 + τT

∂
∂t

)︂
∇2Ṫ (8)

=
(︃
1 + τq

∂
∂t +

τ2q
2
∂2
∂t2

)︃(︁
ρce T̈ + aT0C̈ + T0β1 ë

)︁
,

(iv) Equation of Diffusion

[︂
D*
(︂
1 + τ̃ν

∂
∂t

)︂
+ D ∂∂t

(︂
1 + τ̃T

∂
∂t

)︂]︂
(9)(︁

−β2∇2ekk + b∇2C − a∇2T
)︁

=
(︃
1 + τ̃q

∂
∂t +

τ̃2q
2
∂2
∂t2

)︃
C̈,

where tij are the components of stress tensor, λ and µ are
material constants, δij is Kronecker’s delta, eij are the com-
ponents of strain tensor, eijk is alternate tensor, mij are
the components of couple-stress. Here αt, αc are the coef-
ficients of linear thermal expansion and diffusion expan-
sion, respectively, T is the temperature change, C is the
mass concentration, α is the couple stress parameter, χij
is symmetric curvature, ωi is the rotational vector, P is
the chemical potential of the material per unit mass, b is
the coefficient describing themeasure ofmass diffusion ef-
fects, a is the coefficient describing the measure of ther-
moelastic diffusion. u = (u,v,w) is the component of dis-
placement vector, ρ is the density, ∆ is the Laplacian op-
erator and∇ is del operator. ce is the specific heat at con-
stant strain, T0 is the reference temperature assumed to
be such that T/T0 << 1. K is the coefficient of the thermal
conductivity, K* is the material characteristics constant of
the theory, ce is the specific heat at constant strain, D and
D* are the thermoelastic diffusion constants. Here, τT , τq
and τν are the phase-lags of the temperature gradient, the
heat flux and thermal displacement gradient, respectively;
and τ̃ν, τ̃T and τ̃q are their respective diffusion relaxation
times.

3 Formulation of the Problem
Let us consider a homogeneous, isotropic, rectangular
modified couple stress thermoelastic-diffusive beam in

a Cartesian coordinate systemOxyzfor the displacement
vector u (x,y,z,t) = (u,v,w) and temperature change T and
concentration C with dimensions of length (0 ≤ x ≤ L) ,
width

(︀
−d/2 ≤ y ≤ d/2

)︀
and thickness

(︀
−h/2 ≤ z ≤ h/2

)︀
,

as shown in Figure 1. We define the x-axis along the length
of the beam, and the y-axis along the width and z-axes
along the thickness, which also represents the axis of ma-
terial symmetry. Thus, any plane cross-section initially
perpendicular to the axis of the beam remains plane and
perpendicular to the neutral surface during bending.

Figure 1: Schematic illustration of the beam set-up

According to the fundamental Euler-Bernoulli as-
sumption for small deflection of a simple bending prob-
lem, the displacement components are given by

u = −z ∂w∂x ,v = 0, w (x,y,z,t) = w (x,t) , (10)

where w (x,t) is the lateral deflection of the beam and t
is the time. The constitutive relation (1) in one-dimension
along the axis and with the help of equation (10), we ob-
tain

tx = − (λ + 2µ) z
∂2w
∂x2 − β1T − β2C. (11)

The bending moment of the cross-section of the beam is
given as

M = Mσ +Mm = d

⎛⎜⎝
h
2∫︁

−h
2

txz dz +

h
2∫︁

−h
2

mxydz

⎞⎟⎠ , (12)

whereMσ andMm are the components of bendingmoment
due to the classic stress and couple stress tensors, respec-
tively.

Making use of the Euler-Bernoulli assumption (10)
and with the aid of equation (11) in equation (12), yields
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M = − (λ + 2µ) I ∂
2w
∂x2 −MT −MC − αA

∂2w
∂x2 , (13)

Thus, I, MT and MC are given by

I =

h
2∫︁

−h
2

dz2dz = dh
3

12 ,MT = β1d

h
2∫︁

−h
2

Tzdz,MC (14)

= β2d

h
2∫︁

−h
2

Czdz,

where I is the second moment of the cross-section area of
the beam, MT and MC are the thermal moment, mass mo-
ments of the beam.

The equation of transverse motion of the beam can be
written as follows [32]:

∂2M
∂x2 − ρA

∂2w
∂t2 = 0, (15)

where ρ denotes the beam density and A = dh is the cross-
sectional area of the beam.

Making use of equation (13) in equation (15), yields

((λ + 2µ) I + αA) ∂
4w
∂x4 + ∂2

∂x2

⎛⎜⎝β1d
h
2∫︁

−h
2

Tzdz

⎞⎟⎠ (16)

+ ∂2
∂x2

⎛⎜⎝β2d
h
2∫︁

−h
2

Czdz

⎞⎟⎠ + ρA ∂
2w
∂t2 = 0.

For a very thin beam, assuming that the temperature in-
crement andmass concentration varies in terms of sin(pz)
function along the thickness of the beam.

T (x, z, t) = T1 (x, t) sin(pz), (17)

where p = π/h.
For convenience, we define the following dimension-

less quantities:(︀
x′, z′, u′, w′)︀ = (x, z, u, w)

L , (18)(︀
τ′ν ,τ′T ,τ′q ,τ̃′ν ,τ̃′T ,τ̃′q ,t′

)︀
= ν
L (τν ,τT ,τq ,τ̃ν ,τ̃T ,τ̃q ,t) ,(︀

T′1,C′1,t′x
)︀
= (β1T1,β2C1,tx)

E ,(︀
M′,M′

T ,M′
C
)︀
= (M,MT ,MC)

dEh2 , ν2 = Eρ ,

K* = ce (λ + 2µ)4 , D = D
*L
ν .

Using equations (10) and (14) in equations (8) and (9) and
then multiplying the resulting equations by z dz and in-
tegrate over the interval

(︀
−h/2, h/2

)︀
, yield the simplifi-

cation equations. These equations and also equation (16),

with the aid of equations (17) and (18), after dropping the
dashes for convenience, can be written as:

∂4w
∂x4 + a1

[︂(︂
∂2T1
∂x2

)︂
+
(︂
∂2C1
∂x2

)︂]︂
+ a2

∂2w
∂t2 = 0, (19)

[︂(︂
1 + τν

∂
∂t

)︂
+ a3

∂
∂t

(︂
1 + τT

∂
∂t

)︂]︂
(20)(︂

∂2T1
∂x2 − a4T1

)︂
=
(︃
1 + τq

∂
∂t +

τ2q
2
∂2
∂t2

)︃
[︂
a5
∂2T1
∂t2 + a6

∂2C1
∂x2 − a7

∂4w
∂x2∂t2

]︂
,

[︂(︂
1 + τ̃ν

∂
∂t

)︂
+ a8

∂
∂t

(︂
1 + τ̃T

∂
∂t

)︂]︂
(21)[︂

a9
∂4w
∂x4 +

(︂
∂2C1
∂x2 − a4C1

)︂
− a10

(︂
∂2T1
∂x2 − a4T1

)︂]︂
= a11

(︃
1 + τ̃q

∂
∂t +

τ̃2q
2
∂2
∂t2

)︃
∂2C1
∂t2 ,

Where,

a1 =
2dEL

p2 [(λ + 2µ) I + αA]
, a2 =

ρAν2L2

[(λ + 2µ) I + αA]
,

a3 =
Kν
K*L , a4 = p2L2, a5 =

ρceν2

K*
, a6 =

aT0ν2β1
β2K*

,

a7 =
β21T0p2h3ν2
24ELK* , a8 =

Dν
D*L , a9 =

−β22p2h3
24bEL ,

a10 =
aβ2
bβ1

, a11 =
ν2
D*b .

4 Solution of the Problem
We define the Laplace transform as:

L {f (t)} =
∞∫︁
0

e−st f (t) dt = f (s) . (22)

where s is the Laplace transform parameter.
The system of equations (19) to (21), after applying the

Laplace transform can be written in a matrix form as:

DV (x,s) = AV (x,s) , (23)

where,

V =
[︃
U
DU

]︃
, U =

[︁
w v T1 C1

]︁T
, (24)

A =
[︃
O I
A1 O

]︃
, A1 =

⎡⎢⎢⎢⎣
0 1 0 0
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤⎥⎥⎥⎦ .
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Here, I denotes the identity matrix of order 4, O denotes
the nullmatrix of order 4 and []T is the transpose ofmatrix,
D = d

dz .
where,

τν = (1 + τνs) , τT = s (1 + τTs) ,

τq =
(︃
1 + τqs +

τ2q
2 s

2
)︃
, τ̃ν = (1 + τ̃νs) ,

τ̃T = s (1 + τ̃Ts) , τ̃q =
(︃
1 + τ̃qs +

τ̃2q
2 s

2
)︃

a21 = −
{︁
a1 (a21 + a31) + a2s2

}︁
,

a22 = − {a1 (a22 + a32)} , a23 = − {a1 (a23 + a33)} ,

a24 = − {a1 (a24 + a34)} , a31 =
a6a41τq

(τν + a3τT)
,

a32 =
(︀
a6a22 − a7s2

)︀
τq

(τν + a3τT)
,

a33 =
a4 (τν + a3τT) +

(︀
a6a23 + a5s2

)︀
τq

(τν + a3τT)
,

a34 =
a6a42τq

(τν + a3τT)
,

a41 =
(︀
a2a9s2

)︀
(τν + a3τT)

(1 − a1a9) (τν + a3τT) − a6τq (a1a9 + a10)
,

a42 =
−a7s2τq (a1a9 + a10)

(1 − a1a9) (τν + a3τT) − a6τq (a1a9 + a10)
,

a43 =
a4 (a1a9 + a10) (τν + a3τT) + a5s2τq (a1a9 + a10)

(1 − a1a9) (τν + a3τT) − a6τq (a1a9 + a10)
,

a44 = (︁
a4
(︁
τ̃ν + a8 τ̃T

)︁
+ a11s2 τ̃q

)︁
(τν + a3τT)

[(1 − a1a9) (τν + a3τT) − a6τq (a1a9 + a10)]
(︁
τ̃ν + a8 τ̃T

)︁ .
To solve the equation (23) by the eigenvalue approach
as [33]. The characteristic equation of the matrix A is writ-
ten as:

λ8 − D1λ6 + D2λ4 − D3λ2 + D4 = 0. (25)

where,

D1 = a22+a33 + a44,
D2 = (a22+a33) a44 + a22a33 − a34a43 − a24a42
− a23a32 − a21,

D3 = a22 (a34a43 − a33a44) + a23 (a32a44 − a34a42)
− a24 (a32a43 − a33a42) − a21 (a33+a44)
+ (a24a41 + a23a31) ,

D4 = a21 (a34a43 − a33a44) + a23 (a31a44 − a34a41)
+ a24 (a33a41 − a31a43) .

The characteristic roots of the equation (25),which are also
the eigenvalues of the matrix A. The eigenvectors X (x,s)
corresponding to eigenvalue λr can be determined by solv-
ing the homogeneous equations:

[A − λI] X (x,s) = 0, (26)

The set of eigen vectors Xr (x,s)may be obtained as:

Xr (x,s) =
[︃
Xr1 (x,s)
Xr2 (x,s)

]︃
, Xr1 (x,s) =

⎡⎢⎢⎢⎣
br
cr
dr
qr

⎤⎥⎥⎥⎦, Xr2 (x,s) =

λrXr1 (x,s) for λ = λr, r = 1, 2, 3, 4 and

Xj (x,s) =
[︃
Xj1 (x,s)
Xj2 (x,s)

]︃
, Xj1 (x,s) =

⎡⎢⎢⎢⎣
br
cr
dr
qr

⎤⎥⎥⎥⎦, Xj2 (x,s) =

λjXj1 (x,s) for j = r + 4, λ = −λr, r = 1, 2, 3, 4,

br =
(︀
λ2r − a22

)︀
δ4 − a23δ2 + a24δ1
a21

,

cr = δ4,dr = δ2,qr = −δ3.

δ1 =
[︃(︁
a31a23 − a21

(︁
a33 − λ2r

)︁)︁
(a41a32 − a31a42)

+
(︁
a31a43 − a41

(︁
a33 − λ2r

)︁)︁(︁
a31

(︁
a22 − λ2r

)︁
− a21a32

)︁]︃
,

δ2 =
[︃
(a31a24 − a21a34) (a41a32 − a31a42)

−
(︁
a34a41 − a31

(︁
a44 − λ2r

)︁)︁(︁
a31

(︁
a22 − λ2r

)︁
− a21a32

)︁]︃
,

δ3 =
[︃(︁
a31

(︁
a22 − λ2r

)︁
− a21a32

)︁(︁
a41

(︁
a33 − λ2r

)︁
−

a31a43
)︁
+ (a31a42 − a41a32)

(︁
a31a23 − a21

(︁
a33 − λ2r

)︁)︁]︃
,

δ4 =
[︃
(a31a24 − a21a34)

(︁
a41

(︁
a33 − λ2r

)︁
− a31a43

)︁
+
(︁
a31

(︁
a44 − λ2r

)︁
− a34a41

)︁(︁
a31a23 − a21

(︁
a33 − λ2r

)︁)︁]︃
.

Thus, the physical quantities are given by:

(︀
w, v, T1, C1

)︀
(x, s) =

4∑︁
r=1

(br , cr , dr , qr) Cre−λrx (27)
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+
4∑︁
j=1

(︀
bj+4, cj+4, dj+4, qj+4

)︀
Cj+4eλjx ,

P (x,s) = (28)
4∑︁
r=1

{︁
a12λ2r br − sin (pz) (a13dr − a14qr)

}︁
Cre−λrx+

4∑︁
j=1

{︁
a12λ2j bj+4 − sin (pz)

(︀
a13dj+4 − a14qj+4

)︀}︁
Cj+4eλjx ,

tx (x,s) = (29)

−
(︃ 4∑︁
r=1

{︁
(λ + 2µ) zλ2r br + β1dr + β2qr

}︁
Cre−λrx

+
4∑︁
j=1

{︁
(λ + 2µ) zλ2j bj+4 + β1dj+4 + β2qj+4

}︁
Cj+4eλjx

)︃
,

where a12 = β2z
bC0 , a13 = aE

β1bC0 , a14 = E
C0β2 , C1, C2, C3, C4,

C5, C6, C7 and C8 are arbitrary constants.

5 Initial and Boundary Conditions
The initial and boundary conditions should be considered
to solve the problem. The initial conditions of the problem
are taken in the form as:

w (x,t)|t=0 =
∂w (x,t)
∂t

⃒⃒⃒⃒
t=0

= 0, (30)

T (x,t)|t=0 =
∂T (x,t)
∂t

⃒⃒⃒⃒
t=0

= 0,

C (x,t)|t=0 =
∂C (x,t)
∂t

⃒⃒⃒⃒
t=0

= 0.

Let us consider a nanobeam where both ends are simply
supported:

w (0, t) = 0, ∂2w (0, t)
∂x2 = 0, w (L,t) = 0, (31)

∂2w (L,t)
∂x2 = 0.

(i) Thermal source

T (0, t) =f1 (t) , (32)

P (0, t) = 0, (33)

(ii) Chemical potential source

T (0, t) = 0, (34)

P (0, t) = f2 (t) , (35)

We also assume that the other side of nanobeam
P (0, t) = f2 (t), is thermally insulated and this means that
the following relation will be satisfied:

dT (L,t)
dx = 0, dC (L,t)dx = 0. (36)

Applications:

(i) For instantaneous sources

f1 (t) = f2 (t) = δ (t) . (37)

(ii) For uniformly distributed sources

f1 (t) = f2 (t) =
{︃
1 if |t| ≤ a
0 if |t| > a,

(38)

Applying Laplace transform on equations (31) to (38)
and using the value of w, T1, C1, tx and P from equations
(27) to (29), after some simplifications, we obtain

(︀
u,w,T1

)︀
(x,s) =

4∑︁
r=1

((zλr + 1) br + dr) Cre−λrx (39)

−
4∑︁
j=1

(︀(︀
zλj+4 + 1

)︀
bj+4 + dj+4

)︀
Cj+4eλjx ,

tx (x,s) = −

⎛⎝ 4∑︁
r=1

MrCre−λrx +
4∑︁
j=1

Mj+4Cj+4eλix
⎞⎠ , (40)

P (x,s) =
4∑︁
r=1

NrCre−λrx+
4∑︁
j=1

Nj+4Cj+4eλjx , (41)

where,

C1
∆1
∆ , C2

∆2
∆ , C3

∆3
∆ , C4

∆4
∆ , C5

∆5
∆ , C6

∆5
∆ ,

C7
∆7
∆ , C8

∆6
∆ ,

and
4∑︁
r=1

Mr =
{︁
(λ + 2µ) zλ2r br + β1dr + β2qr

}︁
,

4∑︁
j=1

Mj+4 =
{︁
(λ + 2µ) zλ2j bj+4 + β1dj+4 + β2qj+4

}︁
,

4∑︁
r=1

Nr =
{︁
a12λ2r br − sin (pz) (a13dr − a14qr)

}︁
,
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4∑︁
j=1

Nj+4 =
{︁
a12λ2j bj+4 − sin (pz)

(︀
a13dj+4 − a14qj+4

)︀}︁
.

∆ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 b2 b3 b4
b1e−λ1 b2e−λ2 b3e−λ3 b4e−λ4
b1λ21 b2λ22 b3λ23 b4λ24

b1λ21e−λ1 b2λ22e−λ2 b3λ23e−λ3 b4λ24e−λ4
d1 d2 d3 d4

−d1λ1e−λ1 −d2λ2e−λ2 −d3λ3e−λ3 −d4λ4e−λ4
N1 N2 N3 N4

−q1λ1e−λ1 −q2λ2e−λ2 −q3λ3e−λ3 −q4λ4e−λ4

· · · b5 b6 b7 b8
· · · b5eλ1 b6eλ2 b7eλ3 b8eλ4
· · · b5λ21 b6λ22 b7λ23 b8λ24
· · · b5λ21eλ1 b6λ22eλ2 b7λ23eλ3 b8λ24eλ4
· · · d5 d6 d7 d8
· · · d5λ1eλ1 d6λ2eλ2 d7λ7eλ3 d8λ8eλ4
· · · N5 N6 N7 N8
· · · q5λ1eλ1 q6λ2eλ2 q7λ3eλ3 q8λ4eλ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∆i (i = 1, ............, 8) is obtained by replacing 1st,
2nd, 3rd, 4th, 5th, 6th, 7th and 8th column by[︁
0, 0, 0, 0, f (s) , 0, 0, 0

]︁T
in for (Thermal source) and[︁

0, 0, 0, 0, 0, f (s) , 0, 0
]︁T

in for (Chemical potential
source)

where,

f (s) = 1, instantaneous source

f (s) = 1 − e−s
s , distributed source

6 Particular Cases

6.1 GN-II model

If K = τν = τT = τq = τ2q = 0, in equations (39) to (41),
weobtain the corresponding results for displacement com-
ponent, lateral deflection, temperature change, chemical
potential and axial stress of the beam in amodified couple
stress thermoelastic diffusion for Green-Naghdi-II (GN-II)
model of thermoelasticity.

6.2 GN-III model

In the absence of τν = τT = τq = τ2q = 0, in equations
(39) to (41), we obtain the corresponding expressions for
displacement component, lateral deflection, temperature

change, chemical potential and axial stress of the beam in
a modified couple stress thermoelastic materials with en-
ergy dissipation in context for GN-III theory of thermoelas-
ticity.

6.3

If we take in equations (39) to (41), we obtain the corre-
sponding results for displacement component, lateral de-
flection, temperature change, chemical potential andaxial
stress of the beam for thermoelastic diffusion with three-
phase-lag model of thermoelasticity. When we takeD =
D* = C = 0, in equations (39) to (41), our results as a spe-
cial case are similar as obtained by Honig and Hirdes [34].

7 Inversion of the Laplace
Transform

We obtained the solutions for the displacement compo-
nent, lateral deflection, temperature change, axial stress
and chemical potential in the Laplace transform domain
(x,s). We shall now outline briefly the numerical inversion
method used to find the solution in the physical domain.
Let f (s) be the Laplace transform of a function f (t). The
inversion formula of Laplace transform can be written as:

f (s) = L [f (t)] =
∞∫︁
0

e−st f (t)dt, (42)

f (t) = L−1
[︁
f (s)

]︁
= 1
2πi

c+i∞∫︁
c−i∞

est f (s)ds, (43)

with s = c + ig;
where c is an arbitrary real number greater than all the real
parts of the singularities of f (s). We adopt a numerical in-
version method on the Fourier series expansion, by which
the integral (43) can be approximated as a series

f (t) = e
ct

t1

[︃
−12Ref (c) (44)

+
∞∑︁
j=0

Re
(︂
f
(︂
c + ijπt1

)︂)︂
cos
(︂
jπ
t1

)︂

−
∞∑︁
j=0

Im
(︂
f
(︂
c + ijπt1

)︂)︂
sin
(︂
jπ
t1

)︂]︃

−
∞∑︁
j=1

e−2cjt1 f (2jt1 + t) .
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for 0 ≤ t ≤ 2t1. The above series (44) is called the Durbin
formula and the last term of this series is called the dis-
cretization error. Sur and Kanoria [35] developed amethod
for accelerating the convergence of the Fourier series and
a procedure that computes approximately the best choice
of the free parameters.

8 Numerical Results and Discussion
For numerical computations, we have chosen the copper
material. The physical data for which are given by Sherief,
Saleh and Hamza [18].
E = 120GPa, ν = 0.34, T0 = 0.293 × 103K, ρ = 8.954 ×
103Kg m−3, K = 0.386 × 103W m−1 K−1, αt = 1.78 ×
10−5 K−1, αc = 1.98 × 10−4 m3 K g−1, ce = 0.3831 ×
103JK g−1 K−1, α = 2.5Kgm s−2, D = 0.85 × 10−8 Kgs m−3,
a = 1.02×104m2 s−2 K−1, b = 9×105Kg−1m5 s−2, t = 1.0s,
C0 = 1, τν = 0.02s, τT = 0.03s, τq = 0.04s, τ̃ν = 0.015s,
τ̃T = 0.01s, τ̃q = 0.1s, L = 1, d = 1, h = 10.

MATLAB software has been used for numerical com-
putations. Using this software, the displacement compo-
nent, lateral deflection, temperature change, axial stress
and chemical potential for different theories of thermoe-
lasticity with respect to the length are computed numer-
ically and shown graphically in Figures 2–21. In these
figures, small dash line corresponds to three-phase-lag
model (TPL), small dash line with centre symbol (− *− *−)
corresponds to Green-Naghdi model (GN-II) and dash line
with centre symbol (− * −) corresponds to Green-Naghdi
model (GN-III) model, respectively.

Instantaneous Source

(i) Thermal Source
(ii) Chemical Potential Source

Distributed Source

(i) Thermal Source
(ii) Chemical Potential Source

Figure 2 represents the temperature change with re-
spect to the length for different thermoelasticity theories. It
is noticed that the value of temperature decreases initially
for the range 0 ≤ x < 2, then it increases to attain maxi-
mum value and after that it decreases in the remaining re-
gion. The value of temperature change is less for the range
0 ≤ x < 2.5 for three-phase-lag than that of Green-Naghdi-
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Figure 2: Temperature change with respect to the length for differ-
ent theories of thermoelasticity
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Figure 3: Lateral deflection with respect to the length for different
theories of thermoelasticity

II and Green-Naghdi-III but a reversed behaviour is seen in
the remaining range of length. Figure 3 depicts the lateral
deflection with respect to the length for different thermoe-
lasticity theories. It is noticed that the value of lateral de-
flection decreases for the range and increases for 1 ≤ x < 4
and then decreases in the remaining range. The value of
lateral deflection is more initially for Green-Naghdi-II as
compared with Green-Naghdi-III and three-phase-lag, but
opposite behaviour is observed for the considered range.

Figure 4 shows the displacement component with re-
spect to the length for different thermoelasticity theories.
The value of displacement component is stable for the
range and then increases in the remaining range for all the
cases of the three-phase-lag, GN-II and GN-III. Figures 5
and 6 represent the axial stress and chemical potential
with respect to the length for different theories of ther-
moelasticity. The variation of axial stress and chemical po-
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Figure 4: Displacement component with respect to the length for
different theories of thermoelasticity
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Figure 5: Axial stress with respect to the length for different theories
of thermoelasticity
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Figure 6: Chemical potential with respect to the length for different
theories of thermoelasticity
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Figure 7: Temperature change with respect to the length for differ-
ent theories of thermoelasticity
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Figure 8: Lateral deflection with respect to the length for different
theories of thermoelasticity

tential are different but behaviour is the same for all the
cases of three-phase-lag, GN-II and GN-III. The value of ax-
ial stress and chemical potential increases monotonically
with respect to the length for three-phase-lag, whereas its
value increases for the range 0 ≤ x ≤ 7 and then decreases.

Figure 7 depicts the temperature change with respect
to the length for different theories of thermoelasticity. The
behaviour and variation of temperature is the same in all
the theories, that is, three-phase-lag, GN-II and GN-III. It
is clear from the figure that the value of temperature de-
creases monotonically with the increase in length for all
the theories. Figure 8 shows the lateral deflection with re-
spect to the length for different theories of thermoelastic-
ity. It is evident that the value of lateral deflection initially
decreases for the range 0 ≤ x ≤ 6 and then its value re-
mains stationary for the remaining range. Thevalues of lat-
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Figure 9: Displacement component with respect to the length for
different theories of thermoelasticity
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Figure 10: Axial stress with respect to the length for different theo-
ries of thermoelasticity

eral deflection is higher forGN-II in comparisonwith three-
phase-lag (TPL) and GN-III. Figure 9 represents the dis-
placement component with respect to the length for differ-
ent thermoelasticity theories. The value of displacement
component is stable initially for the range 0 ≤ x ≤ 6, and
then, it increases in the assumed region for all the cases
of thermoelasticity. The value of displacement component
is greater for the three-phase-lag than that for GN-II and
GN-III.

Figures 10 and 11 represent the axial stress and chem-
ical potential with respect to the length for different ther-
moelasticity theories. The behaviour and variation of ax-
ial stress and chemical potential are same for all theo-
ries. Also, the value of axial stress and chemical poten-
tial decreases for the range and remains oscillatory in the
considered region of length for three-phase-lag, GN-II and
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Figure 11: Chemical potential with respect to the length for different
theories of thermoelasticity
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Figure 12: Temperature change with respect to the length for differ-
ent theories of thermoelasticity

GN-III. The value of axial stress and chemical potential
for GN-II and GN-III are smaller in comparison with the
three-phase-lag. Figures 12 and 13 depict the temperature
change and lateral deflectionwith respect to the length for
different theories of thermoelasticity. It is observed that
the behaviour of temperature change and lateral deflec-
tion are different for all thermoelastic theories. The value
of temperature change and lateral distribution decreases
for small values of length and then remain stationary for
higher values. Its value is greater for the three-phase-lag
than that of GN-II and GN-III.

Figure 14 shows the displacement component with re-
spect to the length for different thermoelasticity theories.
Initially, the value of displacement component is station-
ary and after that, it increases for the remaining region
for all the theories of thermoelasticity. The value of dis-
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Figure 13: Lateral deflection with respect to the length for different
theories of thermoelasticity
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Figure 14: Displacement component with respect to the length for
different theories of thermoelasticity
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Figure 15: Axial stress with respect to the length for different theo-
ries of thermoelasticity
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Figure 16: Chemical potential with respect to the length for different
theories of thermoelasticity
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Figure 17: Temperature change with respect to the length for differ-
ent theories of thermoelasticity

placement component is less for three-phase-lag than that
of GN-II and GN-III. Figures 15 and 16 represent the axial
stress and chemical potential with respect to the length for
different thermoelastic theories. The values of both axial
stress and chemical potential are oscillatory for the range
0 ≤ x ≤ 5 and then decrease in the remaining range. It is
clear from the figure that the variation of axial stress and
chemical potential are almost the same for three-phase-
lag, GN-II and GN-III, but there are differences between
their values. Figure 17 depicts the temperature changewith
respect to the length for different theories of thermoelastic-
ity. It is noticed that the temperature decreases smoothly
for the range 0 ≤ x ≤ 4 and then it remains stationary
in the assumed region for all the thermoelastic theories.
Figure 18 shows the lateral deflection with respect to the
length for different theories of thermoelasticity. It is ob-
served that the behaviour and variation is same for all the
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Figure 18: Lateral deflection with respect to the length for different
theories of thermoelasticity
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Figure 19: Displacement component with respect to the length for
different theories of thermoelasticity

cases of thermoelastic theories, that is, three-phase-lag,
GN-II and GN-III. The value of lateral deflection is more for
GN-II than that of three-phase-lag and GN-III.

Figure 19 represents the displacement component
with respect to the length for different theories of thermoe-
lasticity. The value of displacement component is station-
ary for a smaller value of thickness and then increases for
higher values of thickness. The displacement component
is same for the range 0 ≤ x ≤ 5, but a small difference is ob-
served in the considered region for all the theories of ther-
moelasticity. Figures 20 and 21 depict the axial stress and
chemical potential with respect to the length for different
theories of thermoelasticity. The values of axial stress and
chemical potential fall down to range 0 ≤ x ≤ 3 and after
that decrease smoothly for the remaining region. It is ob-
served that the values of axial stress and chemical poten-
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Figure 20: Axial stress with respect to the length for different theo-
ries of thermoelasticity
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Figure 21: Chemical potential with respect to the length for different
theories of thermoelasticity

tial are greater for GN-II as compared to three-phase-lag
and GN-III for the range 0 ≤ x < 4 and reversed behaviour
is noticed for the assumed region.

9 Conclusions
The thermoelastic nanoscale beam in a modified couple
stress thermoelastic in the context of the three-phase-lag
diffusion model is studied. The Euler-Bernoulli beam as-
sumption and the Laplace transform technique are used to
write the basic set of equations in the formof vector-matrix
differential equation, which is then solved by the eigen-
value approach. A numerical technique has been adopted
to recover the solutions in the physical domain. Special
type of instantaneous and distributed sources are taken
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to show the utility of the approach. The general algorithm
of the inverse Laplace transform is developed to compute
the results numerically. The numerical results are depicted
graphically to show the effects of phase lags, with and
without energy dissipation on the physical quantities. For
thermal source, it is observed from the figures that lat-
eral deflection, axial stress and chemical potential for dis-
tributed source are higher in comparison with instanta-
neous source, whereas opposite behaviour is noticed in
the case of temperature change and displacement compo-
nent for three-phase-lag, GN-II and GN-III theories of ther-
moelasticity. For chemical potential source, it is noticed
that the temperature change, lateral deflection, displace-
ment component, axial stress and chemical potential are
greater values for instantaneous source as compared with
distributed source for different theories of thermoelastic-
ity, that is, three-phase-lag, Green-Naghdi-II and Green-
Naghdi-III. Three-phase-lag model is very helpful in prob-
lems like nuclear boiling, exothermic catalytic reactions,
phonon-electron interactions and phonon scattering.

References
[1] Voigt,W.: TheoretischeStudienuber die Elasticitatsverhaltnisse

der Krystalle. Abh. Ges. Wiss. Gottingen, 34, 1887.
[2] Cosserat, E. and Cosserat, F.: Theory of Deformable Bodies. Her-

mann et Fils, Paris, 1909.
[3] Toupin, R. A.: Elastic materials with couple-stresses, Arch. for

Ratio. Mech. Analy., 11, 385–414, 1962.
[4] Mindlin, R. D. and Tiersten, H. F.: Effects of couple-stresses in

linear elasticity, Arch. for Ratio. Mech. and Analy., 11, 415–448,
1962.

[5] Sengupta, P. R. and Ghosh, B.: Effect of couple stresses on sur-
face waves in elastic media, Gerlands Beitr. Geophysik, Leipzig,
83, 309–318, 1974a.

[6] Sengupta, P. R. and Ghosh, B.: Effect of couple stresses on
propagation of waves in an elastic layer, Pure appl. Geophys,
Leipzig, 1123, 331–338, 1974b.

[7] Yang, F., Chong, A. C. M., Lam, D. C. C. and Tong, P.: Couple
stress based strain gradient theory for elasticity, Int. J. Solids
Struct., 39, 2731–2743, 2002.

[8] Simsek, M. and Reddy, J. N.: Bending and vibration of function-
ally graded microbeams using a new higher order beam theory
and the modified couple stress theory, Int. J. of Engg. Sci., 64,
37–53, 2013.

[9] Kumar, R., Singh, R. and Chadha, T. K.: Eigenvalue approach to
micropolar thermoelasticity without energy dissipation, Indian
Journal of mathematics, 49(3), 355–369, 2007.

[10] Hetnarski, R. B., Ignaczak, J.: Generalized thermoelasticity, J.
Therm. Stresses, 22, 451–476, 1999.

[11] Lord, H., Shulman, Y.: A generalized dynamical theory of ther-
moelasticity, J. Mech. Phys. Solids, 15, 299–309, 1967.

[12] Green, A. E. and Lindsay, K. A.: Thermoelasticity, J. Elasticity, 2,
1–7, 1972.

[13] Hetnarski, R. B. and Ignaczak, J.: Solution-like waves in a low
temperature nonlinear thermoelastic solid, Int. J. Eng. Sci., 4,
1767–1787, 1996.

[14] Green, A. E. and Naghdi, P. M.: On undamped heat waves in an
elastic solid, J. Therm. Stresses, 15, 253–264, 1992.

[15] Tzou, D. Y.: A unified field approach for heat conduction from
micro to macroscales, ASME J. Heat Transf., 117, 8–16, 1995.

[16] Roychoudhuri, S. K.: On a thermoelastic three-phase-lagmodel,
J. of Thermal Stresses, 30, 231–238, 2007.

[17] Nowacki, W.: Dynamical Problems of Thermo diffusion in Solids
I, Bull Acad. Pol. Sci. Ser. Sci. Tech., 22, 55–64, 1974.

[18] Sherief, H. H., Saleh, H. andHamza, F.: The theory of generalized
thermoelastic diffusion, Int. J. Engg. Sci., 42, 591-608, 2004.

[19] Sherief, H. H. and Saleh, H.: A half-space problem in the theory
of generalized thermoelastic diffusion, Int. J. of Solid and Struc-
tures, 42, 4484–4493, 2005.

[20] Kumar, R. and Kansal, T.: Propagation of Lamb waves in trans-
versely isotropic thermoelastic diffusion plate, Int. J. of Solid
and Structures, 45, 2008, 5890–5913.

[21] Sharma, K.: Analysis of deformation due to inclined load in gen-
eralized thermodiffusive elastic medium, Int. J. of Engineering
Science and Technology, 3(2), 117–129, 2011.

[22] Sarkar, N. and Lahiri, A.: (2012) Eigenvalue approach to
two-temperature magneto-thermoelasticity, Vietnam Journal of
Mathematics, 40(1), 13–30, 2012.

[23] Rezazadeh, G., Vahdat, A. S., Tayefeh-rezaei, S., Cetinkaya, C.:
Thermoelastic damping in a micro-beam resonator using mod-
ified couple stress theory, Acta Mechanica, 223(6), 1137–1152,
2012.

[24] Abouelregal, A. E. andZenkour, A.M.: (2014) Effect of phase lags
on thermoelastic functionally graded microbeams subjected
to ramp-type heating, Iranian Journal of Science and Technol-
ogy: Transactions of Mechanical Engineering, 38(M2), 321–335,
2012.

[25] Kumar, R. and Devi, S.: Interaction due to Hall current and rota-
tion in a modified couple stress elastic half-space due to ramp-
type loading, Comp. methods in Sci. and Tech., 21(4), 229–240,
2015. DOI:10.12921/cmst.2015.21.04.007.

[26] Reddy, J. N., Romanoff, J. and Loya, J. A.: Nonlinear finite element
analysis of functionally graded circular plates with modified
couple stress theory, European Journal of Mechanics- A/Solids,
56, 92–104, 2016.

[27] Chen, W. and Wang, Y.: A model of composite laminated Reddy
plate of the global-local theory based on new modified couple-
stress theory,Mechanics of AdvancedMaterials and Structures,
23(6), 636–651, 2016.

[28] Zenkour, A. M. and Abouelregal, A. E.: Effect of ramp-type heat-
ing on the vibration of functionally graded microbeams with-
out energy dissipation, Mechanics of Advanced Materials and
Structures, 23(5), 529–537, 2016.

[29] Kumar, R.: Response of thermoelastic beam due to thermal
source inmodified couple stress theory, CMST, 22(2), 2016, 95–
101.

[30] Green, A. E. and Naghdi, P. M.: Thermoelasticity without energy
dissipation, J. Elast., 31, 189–209, 1993.

[31] Sur, A. andKanoria,M.: Three-phase-lag elasto-thermodiffusive
response in an elastic solid under hydrostatic pressure, Int. J.
of Advances in Applied Mathematics and Mechanics, 3(2), 121–
137, 2015.

[32] Rao, S. S.: Vibration of Continuous Systems. JohnWiley & Sons,



Resonance of Nanoscale Beam due to Various Sources | 49

Inc. Hoboken, New Jersey, 2007.
[33] Das, N. C., Lahiri, A. and Giri, R. R.: Eigenvalue approach to gen-

eralized thermoelasticity, Indian J. Pure Appl. Math., 28, 1573–
1594, 1997.

[34] Honig, G. and Hirdes, U.: A method for the numerical inversion
of the Laplace transform, J. Comput. Appl. Math., 10, 113–13,
19842.

[35] Sur, A. and Kanoria, M.: Vibration of a gold-nanobeam induced
by ramp type laser pulse three-phase-lag model, Int. J. of Appl.
Math. and Mech., 10(5), 86–104, 2014.


	1 Introduction
	2 Basic Equations
	3 Formulation of the Problem
	4 Solution of the Problem
	5 Initial and Boundary Conditions
	6 Particular Cases
	6.1 GN-II model
	6.2 GN-III model
	6.3 

	7 Inversion of the Laplace Transform
	8 Numerical Results and Discussion
	9 Conclusions

